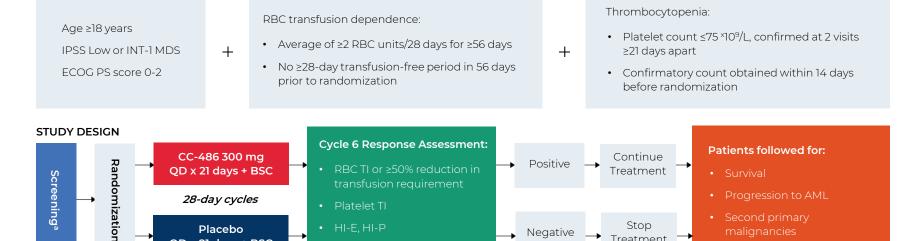
A Phase III Placebo-controlled Trial of CC-486 in Patients with Red Blood Cell Transfusion-dependent (RBC-TD) Anemia and Thrombocytopenia Due to IPSS Lower-risk Myelodysplastic Syndromes (LR-MDS)

Guillermo Garcia-Manero,¹ Valeria Santini,² Antonio Almeida,³ Uwe Platzbecker,⁴ Anna Jonasova,⁵ Lewis Silverman,⁶ Jose Falantes,² Gianluigi Reda,⁶ Francesco Buccisano,⁶ Pierre Fenaux,¹⁰ Rena Buckstein,¹¹ María Díez Campelo,¹² Stephen Larsen,¹³ David Valcarcel,¹⁴ Paresh Vyas,¹⁵ Valentina Giai,¹⁶ Esther Natalie Olíva,¹ˀ Jake Shortt,¹⁶ Dietger Niederwieser,¹⁰ Moshe Mittelman,²⁰ Luana Fianchi,²¹ Ignazia La Torre,²² Barry Skikne,²³,²⁴ Eric Laille,²³ Jim Zhong,²³ CL Beach,²³ Aristoteles Giagounidis²⁵

¹University of Texas MD Anderson Cancer Center, Houston, United States; ²MDS Unit, Hematology, University of Florence, Florence, Italy; ³Hospital da Luz Lisboa, Lisbon, Portugal; ⁴Universitätsklinikum Leipzig, Leipzig, Germany; ⁵Charles University and General University Hospital, Prague, Czech Republic; ⁶Icahn School of Medicine at Mount Sinai, New York, United States; ⁷Hospital Universitario Virgen del Rocio, Seville, Spain; ⁸Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy; ⁹Fondazione PTV Policlinico Tor Vergata, Rome, Italy; ¹⁰Hôpital St. Louis, Université Paris, Paris, France; ¹¹Sunnyphrook Health Sciences Centre, Toronto, Canada; ¹²Hospital Universitario de Salamanca, Spain; ¹³Royale Prince Alfred Hospital, Sydney, Australia; ¹⁴Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹⁵MRC Molecular Haematology Unit and Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals, Oxford, United Kingdom; ¹⁶Antonio e Biagio e Cesare Arrigo Hospital, Alessandria, Italy; ¹⁷Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy, ¹⁸Monash University and Monash Health, Melbourne, Australia; ¹⁸University of Leipzig, Leipzig, Germany; ²⁰Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ²¹Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; ²²Celgene, a Bristol-Myers Squibb Company, Boudry, Switzerland; ²³Bristol-Myers Squibb Company, Princeton, United States; ²⁴University of Kansas Medical Center, Kansas City, United States; ²⁵Marien Hospital Düsseldorf, Germany



Study design

AZA-MDS-003: Randomized, double-blind, placebo-controlled, phase III trial

KEY INCLUSION CRITERIA

Stop

Treatment

Negative

AML, acute myeloid leukemia; BSC, best supportive care; ECOG PS, Eastern Cooperative Oncology Group performance status; HI, hematologic improvement; HI-E, HI-erythroid; HI-P, HI-platelet; INT, Intermediate; IPSS, International Prognostic Scoring System; MDS, myelodysplastic syndromes; PD, progressive disease; RBC, red blood cell; TI, transfusion independence.

Placebo

QD x 21 days + BSC

The screening phase was initially defined as 84 days from randomization to allow repeated confirmation of RBC-TD and concomitant thrombocytopenia, but later amended to shorten the interval to 56 days. ClinicalTrials.gov NCT01566695.

Endpoints and statistical assumptions

Primary endpoint:

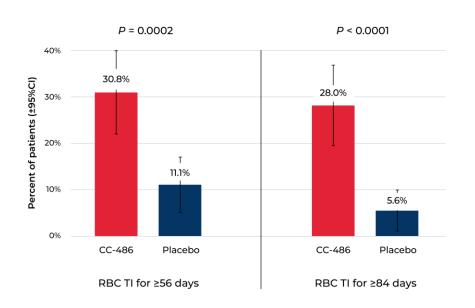
Rate of RBC TI lasting ≥56 days (IWG 2006¹)

Key secondary endpoints:

- RBC TI lasting ≥84 days
- RBC TI duration
- OS
- HI-Erythroid (HI-E), HI-Platelet (HI-P)
- AML progression

Enrollment and statistical assumptions:

- Planned enrollment: N = 386
 - >99% power for RBC TI, 80% power for OS
- Independent DMC review revealed an imbalance in early deaths (days 1-56) between treatment groups
 - Enrollment began in 2013 and was stopped in 2018
- Final enrollment: N = 216
 - 99% power for RBC TI, 72% power for OS



^{1.} Cheson et al. Blood. 2006;108(2):419-25.

AML, acute myeloid leukemia; DMC, Data Monitoring Committee; HI, hematologic improvement; HI-E, HI-erythroid; Hi-P, Hi-platelet; IWG, International Working Group; OS, overall survival; RBC, red blood cell; TI, transfusion independence.

RBC TI

	CC-486 N = 107	Placebo N = 108°
RBC TI for ≥56 days, n (%)	33 (30.8)	12 (11.1)
[95% CI]	[22.1, 39.6]	[5.2, 17.0)
Odds ratio [95% CI]	3.6 [1.7, 7.4]	
P value ^b	0.0002	
RBC TI for ≥84 days, n (%)	30 (28.0)	6 (5.6)
[95% CI]	[19.5, 36.5]	[1.2, 9.9]
Odds ratio [95% CI]	6.6 [2.6, 16.7]	
P value ^b	< 0.0001	

- · Median number of treatment cycles:
 - CC-486: 5 (range 1-70)
 - Placebo: 6 (range 1-69)

^{*}One patient randomized to placebo was retrospectively determined to have a B12 deficiency at study entry and was enrolled in violation of the protocol. This patient is excluded from response and survival analyses.

PP value is two-sided from a Mantel-Haenszel chi-squared test stratified for average baseline RBC transfusion requirement (<4 units vs. >4 units per 28 days), platelet transfusion dependence (yes vs. no), and ECOC performance status score (0-1 vs. 2).

RBC TI defined using International Working Group 2006 MDS response criteria (Cheson et al., Blood 2006;108(2):419-25).

CI, confidence interval; ECOG Eastern Cooperative Oncology Group; IWG, International Working Group; MDS myelodysplastic syndromes; RBC, red blood cell; TI, transfusion independence.

Safety

Adverse events (all grades) reported in ≥30% of patients in either arm

	CC-486 N = 107	Placebo N = 109
	n (%)	
Nausea	81 (76)	25 (23)
Diarrhea	73 (68)	25 (23)
Vomiting	67 (63)	10 (9)
Neutropenia	54 (50)	16 (15)
Constipation	51 (48)	24 (22)
Pyrexia	36 (34)	18 (17)

- Treatment interruption due to AEs: CC-486 62%, placebo 37%
- Dose reduction due to AEs: CC-486 29%, placebo 4%
- Treatment discontinuation due to AEs: CC-486 30%, placebo 28%
- Treatment-related AEs more common with CC-486, occurred mostly during early treatment cycles

AE. adverse event.

Grade 3-4 adverse events reported in ≥10% of patients in either arm

	CC-486 N = 107	Placebo N = 109
	n (%)	
≥1 grade 3-4 AE	96 (90)	80 (73)
Neutropenia	50 (47)	13 (12)
Thrombocytopenia	31 (29)	17 (16)
Febrile neutropenia	30 (28)	11 (10)
Anemia	20 (19)	18 (17)
Pneumonia	13 (12)	10 (9)

Summary

- LR-MDS patients with unfavorable disease features, including RBC-TD anemia and thrombocytopenia, have poor prognosis, indicating a need for disease-modifying treatment
- AEs were more frequent with CC-486 than with placebo; AEs can be managed with appropriate patient monitoring, especially during early treatment cycles, with supportive care measures, and with dose modifications or interruptions if necessary
- Patients with severe neutropenia are at higher risk for hematologic toxicity during early CC-486 treatment and may benefit from a modified dosing regimen
- CC-486 significantly improved RBC TI rate and induced durable bilineage hemoglobin and platelet improvements in these LR-MDS patients with high-risk disease features

AEs, adverse events; LR-MDS, lower-risk myelodysplastic syndromes; RBC, red blood cell; TD, transfusion dependence; TI, independence

